1

How to show $$1/e=1-1+\frac1{2!}-\frac1{3!}+\frac1{4!}+\dots$$

I have consider the product of the nth partial sums of the expansions for $e$ and $1/e$ but still can't prove there are equal to 1

with the definition $e=1+1+\frac1{2!}+\frac1{3!}+\dots$

1 Answers1

4

I assume you know that

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ldots = \sum_{k=0}^{\infty} \frac{1}{k!}.$$

Now let

$$f = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \ldots = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!}.$$

By the Mertens theorem and the binomial formula

$$\begin{align*} e \cdot f & = \left( \sum_{k=0}^{\infty} \frac{1}{k!} \right) \cdot \left( \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \right) = \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{(-1)^{n-k}}{k! (n-k)!} \\[1ex] & = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} \cdot 1^k \cdot (-1)^{n-k} = \sum_{n=0}^{\infty} \frac{(1-1)^n}{n!} = \frac{1}{0!} = 1 \end{align*}$$

so $f = \frac{1}{e}$. In the end we used the fact that

$$0^n = \begin{cases} 1 & \text{ if } n = 0 \\ 0 & \text{ if } n > 0 \end{cases}$$

Adayah
  • 10,468