If $ \ \ \large \sum_{n=0}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^n= \frac{1-\sqrt{1-4x}}{2x} \ $ , then show that $ \ \sum_{n=0}^{\infty} \binom{2n}{n}x^n = \frac{1}{\sqrt{1-4x}} \ $ .
Answer:
I have no idea how to start this type of .
Any idea ?
If $ \ \ \large \sum_{n=0}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^n= \frac{1-\sqrt{1-4x}}{2x} \ $ , then show that $ \ \sum_{n=0}^{\infty} \binom{2n}{n}x^n = \frac{1}{\sqrt{1-4x}} \ $ .
Answer:
I have no idea how to start this type of .
Any idea ?
$ x\sum_{n=0}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^n= \frac{1-\sqrt{1-4x}}{2} \Rightarrow \sum_{n=0}^{\infty} \frac{1}{n+1} \binom{2n}{n} x^{n+1}= \frac{1-\sqrt{1-4x}}{2} $ . Try to take the derivative of both sides.