Induction way:
Assume that we have $$\sum_{k=0}^n \sin \frac{k\pi}{3} = 2\sin\frac{n\pi}{6}\sin\frac{(n+1)\pi}{6}.$$
We prove that
$$\sum_{k=0}^{n+1} \sin \frac{k\pi}{3} = 2\sin\frac{(n+1)\pi}{6}\sin\frac{(n+2)\pi}{6}.$$
Indeed, one has $$LHS = \sum_{k=0}^n \sin \frac{k\pi}{3} + \sin\frac{(n+1)\pi}{3} = 2\sin\frac{n\pi}{6}\sin\frac{(n+1)\pi}{6} + 2\cos\frac{(n+1)\pi}{6}\sin\frac{(n+1)\pi}{6}$$
$$=2\sin \frac{(n+1)\pi}{6}\left(\sin\frac{n\pi}{6} + \cos\frac{(n+1)\pi}{6}\right) = 2\sin \frac{(n+1)\pi}{6}\left(\sin\frac{n\pi}{6} + \sin(\frac{\pi}{2}-\frac{(n+1)\pi}{6})\right)$$
$$=2\sin \frac{(n+1)\pi}{6}\left(2 \sin (\frac{\pi}{6})\cos(\frac{n\pi}{6}-\frac{\pi}{6})\right) = 2\sin \frac{(n+1)\pi}{6}\sin \frac{(n+2)\pi}{6}.$$
Shorter way
One has $$\sin \frac{\pi}{3}\sum_{k=0}^n \sin \frac{k\pi}{3} = \sum_{k=0}^n \sin \frac{k\pi}{3}\sin \frac{\pi}{3} =\sum_{k=0}^n\frac{1}{2}\left( \cos \frac{(k-1)\pi}{3} - \cos \frac{(k+1)\pi}{3}\right)$$
$$ = \frac{1}{2}\left(\cos\frac{-\pi}{3}+1-\cos\frac{n\pi}{3}-\cos\frac{(n+1)\pi}{3}\right) = \frac{1}{2}\left(2\cos^2\frac{\pi}{6}-2\cos\frac{(2n+1)\pi}{6}\cos\frac{\pi}{6}\right)$$
$$=\cos\frac{\pi}{6}\left(\cos\frac{\pi}{6}-\cos\frac{(2n+1)\pi}{6}\right)=2\sin\frac{\pi}{3}\sin\frac{n\pi}{6}\sin\frac{(n+1)\pi}{6}.$$
\sinin stead ofsin. Also try writing\left ( \frac{ i \pi }{ 3 } \right )the\rightand\leftwill adjust the size of your parentheses. – gebruiker Oct 09 '17 at 15:26