I wish to calculate the integral $$I=\frac{1}{\omega_n}\int_{\mathbb{S}^n}\! x_{n+1}^2\,\mathrm{d}x$$ where $\mathbb{S}^{n}$ denotes the unit sphere in $\mathbb{R}^{n+1}$ with surface area $\omega_n$, and $\mathrm{d}x$ denotes integration w.r.t. the usual measure on $\mathbb{S}^{n}$, and in a slight abuse of notation, $x_{n+1}$ refers to the coordinate in $\mathbb{R}^{n+1}$. This is my approach as a solution.
We may rewrite this integral in stereographic coordinates (see my previous question for the relevant formulae) as $$ I= \frac{1}{\omega_n}\int_{\mathbb{R}^n}\,\left(\frac{2y_i}{1+|y|^2}\right)^2\frac{2^n}{(1+|y|^2)^n}\,\mathrm{d}y = \frac{1}{\omega_n}\int_{\mathbb{R}^n}\,\frac{2^{n+2} y_i^2}{(1+|y|^2)^{n+2}}\,\mathrm{d}y $$ but then \begin{align} nI &= \frac{1}{\omega_n}\int_{\mathbb{R}^n}\,\frac{2^{n+2}|y|^2}{(1+|y|^2)^{n+2}}\,\mathrm{d}y = 2^{n+2}\frac{\omega_{n-1}}{\omega_n}\int_{\mathbb{R}^n}\,\frac{r^{n+1}}{(1+r^2)^{n+2}}\,\mathrm{d}y \\ &= 2^{n+1}\frac{\omega_{n-1}}{\omega_n} \int_0^\infty{\frac{s^{\frac n2}}{(1+s)^{n+2}}}\,\mathrm{d}s \tag*{ $r^2=s$ } \\ &= 2^{n+1}\frac{\omega_{n-1}}{\omega_n}\int_0^1 \left(\frac{1-t}{t}\right)^{\frac n2}t^n\,\mathrm{d}t \tag*{ $ t=1/(1+s) $ } \\ &= 2^{n+1}\frac{\omega_{n-1}}{\omega_n} B\left(\frac n2+1,\frac n2+1\right) \\ &= 2^{n+1}\frac{\omega_{n-1}}{\omega_n}\frac{\Gamma(\tfrac n2 + 1)^2}{\Gamma(n+2)} \end{align} where $B$ is the beta function, so that $$ \frac{1}{\omega_n}\int_{\mathbb{S}^n}\! x_{n+1}^2\,\mathrm{d}x = \frac{2^{n+1}\omega_{n-1}\Gamma(\tfrac n2 + 1)^2}{n \omega_n\Gamma(n+2)}. $$
This seems awfully complicated. Is there any way to get a simpler answer to this? Expanding out $\omega_{n-1}$ and $\omega_n$ doesn't seem to help.