Is there any formular to this sum? $$ \binom{n}{1} + \binom{n+1}2 + \binom{n+2}3 + \cdots + \binom{n+m-1}m$$
This is a sum of left aligned pascal’s triangle.
For example, that is the sum of below numbers.(n=5, m=4)
[[ 1 1 1 1 1]
[ 1 2 3 4 5]
[ 1 3 6 10 15]
[ 1 4 10 20 35]]
It looks like the sum is $$ \binom{m}1\binom{n}1 + \binom{m}2\binom{n}2 + \binom{m}3\binom{n}3 + \cdots + \binom{m}n\binom{n}n, \;\text{where } m>n$$ But I can't get a shorter form.