Can someone help me calculate the following limit:
$$\lim_{n\to \infty} \left(\frac {\sqrt[n] 2 + \sqrt[n] 3} 2\right)^n$$
Can someone help me calculate the following limit:
$$\lim_{n\to \infty} \left(\frac {\sqrt[n] 2 + \sqrt[n] 3} 2\right)^n$$
$$\lim_{n\to \infty} \left(\frac {\sqrt[n]{2 }+ \sqrt[n] {3}} 2\right)^n =\lim_{n\to \infty} \left(1+\frac{x_n}{n}\right)^n$$
Where $$x_n=\frac{1}{2}(n(\sqrt[n]{2}-1)+n(\sqrt[n]{3}-1))$$
Now $$n(\sqrt[n]{a}-1)\to\ln a$$
So your limit is $$e^{\frac{1}{2}(\ln 2+\ln 3)}=\sqrt{6}$$