The Summa Potestatum involves many other relations.
Some of the more interesting are
Recursion
$$ \bbox[lightyellow] {
S_m (n) = \sum\limits_{0\, \le \,k\, \le \,n - 1} {k^{\,m} } = \left[ {1 \le n} \right]\left( {\left[ {0 = m} \right] + \sum\limits_k {\left( \matrix{
m \cr
k \cr} \right)S_k (n - 1)} } \right)\quad \left| {\;0 \le {\rm integer }m,n} \right.
} \tag{1}$$
where $[P]$ denotes the Iverson bracket
Relation with Eulerian, Stirling and Bernoulli Numbers
$$ \bbox[lightyellow] {
\eqalign{
& S_m (n) = \sum\limits_{0\, \le \,k\, \le \,n - 1} {k^{\,m} } \quad \left| {\;0 \le {\rm integer }m,n} \right. = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)} {\left\langle \matrix{
m \hfill \cr
j \hfill \cr} \right\rangle \left( \matrix{
n + j \cr
m + 1 \cr} \right)} = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)} {\;j!\;\left\{ \matrix{
m \cr
j \cr} \right\}\left( \matrix{
n \cr
j + 1 \cr} \right)} = \cr
& = {1 \over {m + 1}}\sum\limits_{0\, \le \,j\, \le \,m} {\left( \matrix{
m + 1 \cr
j \cr} \right)\;B_{\,j} \;n^{\,m + 1 - j} } \cr}
}\tag{2}$$
where
- the angle braces denote the Eulerian Numbers (1st kind)
- the curly braces correspond to the Stirling Numbers of 2nd kind
- $B_j$ are the Bernoulli Numbers ($B_1=-1/2$).
The first two, at least, use numbers well defined in its own and so avoid the "circularity" you are lamenting.
We can see how for instance it comes that
$$
\eqalign{
& S_3 (n) = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)} {\;j!\;\left\{ \matrix{
3 \cr
j \cr} \right\}\left( \matrix{
n \cr
j + 1 \cr} \right)} = \left( {\left( \matrix{
n \cr
2 \cr} \right) + 6\left( \matrix{
n \cr
3 \cr} \right) + 6\;\left( \matrix{
n \cr
4 \cr} \right)} \right) = \cr
& = {{n\left( {n - 1} \right)} \over 2} + n\left( {n - 1} \right)\left( {n - 2} \right) + {{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)} \over 4} = \cr
& = {{n\left( {n - 1} \right)\left( {n^{\,2} - n} \right)} \over 4} = \left( {{{n\left( {n - 1} \right)} \over 2}} \right)^{\,2} = S_1 (n)^{\,2} \cr}
$$
The Faulhaber's Formula that Achille hui already indicated, provides much more insight.
Relation with Bernoulli Polynomial and Hurwitz Zeta
Finally it is interesting to note that the Indefinite Sum is
$$ \bbox[lightyellow] {
\eqalign{
& \sum\nolimits_{\;x\;} {x^{\,m} } + c\quad \left| {\;0 \le {\rm integer }m} \right. = \cr
& = \left( {\sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)} {j!\left\{ \matrix{
m \cr
j \cr} \right\}\left( \matrix{
x \cr
j + 1 \cr} \right)} } \right) = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m} \right)} {\left\langle \matrix{
m \cr
j \cr} \right\rangle \left( \matrix{
x + j \cr
m + 1 \cr} \right)} = {1 \over {m + 1}}\sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m + 1} \right)} {\left( \matrix{
m + 1 \cr
j \cr} \right)\;B_j \;x^{\,m + 1 - j} } = \cr
& = {1 \over {m + 1}}B(m + 1,x) = - \,\zeta ( - m,x) \cr}
} \tag{3}$$
where $B(n,x)$ are the Bernoully polynomials and $\zeta(n,x)$ the Hurwitz Zeta Function.
And it is also possible to establish a connection with the Generalized Harmonic numbers (as you already found) and many others.