Motivation from this question $(1)$
$$\int_{0}^{1}\left({1\over \ln(x)}+{1\over 1-x} -{1\over 2}\right){x^s\over 1-x}\mathrm dx=F(s)\tag1$$
setting $s=0$ then $F(0)=-{1\over 2}+{1\over 2}\ln(2\pi)-{1\over 2}\gamma$
by a slight variation of $(1)$, we have
$$\int_{0}^{1}\left({1\over \ln(x)}+{1\over 1-x} -{x^s\over 2}\right){\mathrm dx\over 1-x}={1\over 2}H_s-{1\over 2}+{1\over 2}\ln(2\pi)-{1\over 2}\gamma\tag2$$
$H_s$ is the harmonic number, $H_0=0$
How do we go about to prove $(2)?$