1

How do I prove that $\dfrac{\sin(\alpha- \beta)}{\sin \alpha - \sin \beta}= \dfrac{\sin\alpha +\sin \beta}{\sin (\alpha + \beta)}$?

Using double angle and addition formulas, I simplified the LHS to $\dfrac{\cos\dfrac{\alpha - \beta}{2}}{\cos\dfrac{\alpha +\beta}{2}}$

Archer
  • 6,051

2 Answers2

1

Method$\#1:$

Use Prosthaphaeresis Formulas and double angle formula: $$\sin2x=2\sin x\cos x$$ in the Right Hand Side as well.

Method$\#2:$

Alternatively using Prove $ \sin(A+B)\sin(A-B)=\sin^2A-\sin^2B $ , $$\sin(A+B)\sin(A-B)=\sin^2A-\sin^2B=?$$

1

$\dfrac{\sin(\alpha - \beta )}{\sin\alpha - \sin\beta}= \dfrac{\sin(\alpha - \beta )\sin (\alpha +\beta)}{(\sin\alpha - \sin\beta)(\sin (\alpha +\beta))}$

Recall that $\sin(\alpha - \beta)\sin(\alpha + \beta)= \sin^2 \alpha - \sin^2\beta$.

Simplifying, we get:

$\dfrac{\sin\alpha+\sin\beta}{\sin(\alpha +\beta)} =RHS$

Q.E.D.

Archer
  • 6,051