$$\underbrace{1^4+2^4+3^4\cdots\ + n^4}_{\sum_{k = 1}^n k^4} = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3-\frac{1}{30}n$$
See the Faulhaber's formula and the Bernoulli number: $\text{B}_{j}(x)$
\begin{align}
\sum_{k=0}^{n} k^p = \frac{1}{p+1} \sum_{j=0}^p (-1)^j {p+1 \choose j} B_j n^{p+1-j}=\frac{\text{B}_{p+1}(n+1)-\text{B}_{p+1}(0)}{p+1}
\end{align}
In your case
\begin{align}
\sum_{k = 1}^n k^4 &= \frac{\text{B}_{4+1}(n+1)-\text{B}_{4+1}(0)}{4+1}\\
&= \frac{1}{5}\text{B}_{5}(n+1)\\
&=\frac{1}{5}\left(\frac16 (-1 - n) + \frac53 (1 + n)^3 - \frac52 (1 + n)^4 + (1 + n)^5\right)\\
&=\frac{1}{5}\left(\frac{\left(-1-n\right)}{6}+\frac{5\left(1+n\right)^3\cdot 2}{6}-\frac{5\left(1+n\right)^4\cdot 3}{6}+\frac{\left(1+n\right)^5\cdot 6}{6}\right)\\
&=\frac{1}{5}\left(\frac{6n^5+15n^4+10n^3-n}{6}\right)\\
&=\frac{6n^5+15n^4+10n^3-n}{30}\\
&= \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3-\frac{1}{30}n \tag*{$\Box$}
\end{align}