I have the following problem:
$$ \lim_{x \to x_0}{\frac{\arcsin x-\arcsin x_0}{x-x_0}}=\text{?} $$
What I have:
Let $x=\sin t$. Then the problem becomes:
$$ \lim_{t \to t_0}{\frac{t-t_0}{\sin t-\sin t_0}} = \lim_{t \to t_0}{\frac{\frac{t-t_0}{2}}{\sin (\frac{t-t_0}{2}) \cos{\frac{t+t_0}{2}}}}=\lim_{t \to t_0}{\frac{1}{\cos(\frac{t+t_0}{2})}}=\frac{1}{\sqrt{1-\sin^2(t_0)}} $$
So I'm kind of stuck here. I'm not very good with trigonometric formulas. Assuming so far the solution is correct, how do I continue from here?
Thanks in advance!
