Find sum to infinity terms of the series $$S=\frac{4}{5}+\frac{4.7}{5.8}+\frac{4.7.10}{5.8.11}+\cdots$$
My Try:
we have $$1+S=1+\frac{4}{5}+\frac{4.7}{5.8}+\frac{4.7.10}{5.8.11}+\cdots$$
now $$(1+x)^n=1+nx+\frac{n(n-1)x^2}{2}+\cdots $$ So comparing we get
$$nx=\frac{4}{5}$$ and
$$\frac{n(n-1)x^2}{2}=\frac{7}{10}$$
solving for $x$ and $n$ we get
$$n=\frac{-16}{19}$$ and $$x=\frac{-19}{20}$$
Hence
$$1+S=(1+x)^n=20^{\frac{16}{19}}$$
$$S=20^{\frac{16}{19}}-1$$
Is this alright?