As usual, let $\Phi$ and $\varphi$ denote the cumulative density function and the density function of a standard normal random variable.
On the wiki page "List of integrals of Gaussian functions", I have found an expected value integral involving a standard normal r.v. and its cdf,
$$I=\int_{-\infty}^{\infty}x\varphi(x)\Phi(a+bx)dx=\frac{b}{\sqrt{1+b^2}}\varphi\left(\frac{a}{\sqrt{1+b^2}}\right),$$
for which I do not know how to do the last step in my solution:
My ansatz is to introduce a parameter integral, $I:=I(a)$, and finding its derivative:
$$ \begin{align*} \frac{\partial I}{\partial a}&=\int_{-\infty}^{\infty}x\varphi(x)\varphi(a+bx)dx\\ &=\int_{-\infty}^{\infty}x\frac{e^{-\frac{1}{2}\left(x^2(1+b^2)+2abx+a^2\right)}}{2\pi}dx\\ &=a\frac{e^{-\frac{1}{2}\frac{a^2}{1+b^2}}}{\sqrt{1+b^2}\sqrt{2\pi}}\\ &=a\frac{\varphi\left(\frac{a}{\sqrt{1+b^2}}\right)}{\sqrt{1+b^2}} \end{align*} $$
Integrating the derivative, we obtain:
$$ \begin{align} I&=\int \frac{\partial I}{\partial a}da + C\\ &=\frac{b}{\sqrt{1+b^2}}\varphi\left(\frac{a}{\sqrt{1+b^2}}\right)+C, \end{align} $$
which equals the solution on the wiki page plus a constant term $C$. From here on, I do not know how to get rid of the integration constant, i.e. how to show that $C=0$.
I do know that for $b=0$ it holds that $I=0$. Is this be sufficient to pin down $C$ to zero? Or do I miss something completely?