Sylvester's Law of Inertia says you can take (half) the Hessian matrix, call that $H,$ then find any congruence $P^T H P = D,$ with $\det P \neq 0.$ The count of positive, negative, zero diagonal elements is the same as the count for the eigenvalues, although the diagonal entries of $D$ are not the eigenvalues.
$$ H = \left(
\begin{array}{rrr}
2 & 2 & - 2 \\
2 & 5 & - 4 \\
- 2 & - 4 & 5 \\
\end{array}
\right)
$$
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
- 1 & 1 & 0 \\
\frac{ 1 }{ 3 } & \frac{ 2 }{ 3 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
2 & 2 & - 2 \\
2 & 5 & - 4 \\
- 2 & - 4 & 5 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & - 1 & \frac{ 1 }{ 3 } \\
0 & 1 & \frac{ 2 }{ 3 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & \frac{ 5 }{ 3 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
- 1 & - \frac{ 2 }{ 3 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & \frac{ 5 }{ 3 } \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 1 & - 1 \\
0 & 1 & - \frac{ 2 }{ 3 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
2 & 2 & - 2 \\
2 & 5 & - 4 \\
- 2 & - 4 & 5 \\
\end{array}
\right)
$$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Algorithm discussed here http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrr}
2 & 2 & - 2 \\
2 & 5 & - 4 \\
- 2 & - 4 & 5 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrr}
1 & - 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrr}
1 & - 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrr}
2 & 0 & - 2 \\
0 & 3 & - 2 \\
- 2 & - 2 & 5 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrr}
1 & - 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrr}
1 & 1 & - 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrr}
2 & 0 & 0 \\
0 & 3 & - 2 \\
0 & - 2 & 3 \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & \frac{ 2 }{ 3 } \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrr}
1 & - 1 & \frac{ 1 }{ 3 } \\
0 & 1 & \frac{ 2 }{ 3 } \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrr}
1 & 1 & - 1 \\
0 & 1 & - \frac{ 2 }{ 3 } \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrr}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & \frac{ 5 }{ 3 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
- 1 & 1 & 0 \\
\frac{ 1 }{ 3 } & \frac{ 2 }{ 3 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
2 & 2 & - 2 \\
2 & 5 & - 4 \\
- 2 & - 4 & 5 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & - 1 & \frac{ 1 }{ 3 } \\
0 & 1 & \frac{ 2 }{ 3 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & \frac{ 5 }{ 3 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
- 1 & - \frac{ 2 }{ 3 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & \frac{ 5 }{ 3 } \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 1 & - 1 \\
0 & 1 & - \frac{ 2 }{ 3 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
2 & 2 & - 2 \\
2 & 5 & - 4 \\
- 2 & - 4 & 5 \\
\end{array}
\right)
$$