Found the following theorem related to the first case of Fermat's Last Theorem is it correct?
Theorem:
Let $p$ be an odd prime and:
$$p \nmid xyz$$
$$\gcd(x,y,z)=1$$
$$x^{p} = y^{p} + z^{p}$$
Then:
$$\sum_{k = 1}^{p - 1}\frac{(p - 1)!u^{k}}{k!(p - k)!}\equiv 0 \pmod{p}$$
for $u \equiv y/z \pmod{p}$
Proof:
Consider the equation:
$$x^{n} - y^{n} \equiv (x - y)nx^{n - 1} \pmod{(x - y)^2}$$
which can be easily proved using induction on $n$.
Now put $n = p$ and note:
$$\gcd((x^{p} - y^{p})/(x - y),x - y)$$
$$= \gcd(x - y,px^{p - 1})$$
$$= \gcd(x - y,p) = 1$$
So we may conclude that:
$$x - y = r^{p}$$
$$(x^{p} - y^{p})/(x - y) = s^{p} \equiv 1 \pmod{p^2}$$
$$z = rs,\gcd(r,s) = 1$$
for some $r,s$.
By means of the binomial expansion of $x^{p} = ((x - y) + y)^{p}$ we get:
$$x^{p} - y^{p} = ((x - y) + y)^{p} - y^{p} = z^{p} = (rs)^{p}$$
$$\implies (rs)^{p} = \binom{p}{0}(x - y)^{p} + \binom{p}{1}y(x - y)^{p - 1} + ... + \binom{p}{p - 1}y^{p - 1}(x - y)$$
Divide by $x - y = r^{p}$:
$$s^{p} = \binom{p}{0}(x - y)^{p - 1} + \binom{p}{1}y(x - y)^{p - 2} + ... + \binom{p}{p - 1}y^{p - 1}$$
Remembering: $s^{p} \equiv 1 \pmod{p^2}$:
$$s^{p} \equiv \binom{p}{0}(x - y)^{p - 1} + \binom{p}{1}y(x - y)^{p - 2} ... + \binom{p}{p - 1}y^{p - 1}\equiv 1 \pmod{p^2}$$
Now note $x - y = r^{p} \implies \binom{p}{0}(x - y)^{p - 1} \equiv r^{p(p - 1)} \equiv 1 \pmod{p^2}$ so we get:
$$\binom{p}{1}y(x - y)^{p - 2} + \binom{p}{2}y^{2}(x - y)^{p - 3} + ... + \binom{p}{p - 1}y^{p - 1}\equiv 0 \pmod{p^2}$$
Divide by $p$:
$$\frac{(p - 1)!y(x - y)^{p - 2}}{1!(p - 1)!} + \frac{(p - 1)!y^{2}(x - y)^{p - 3}}{2!(p - 2)!} + ... + \frac{(p - 1)!y^{p - 1}}{(p - 1)!1!}\equiv 0 \pmod{p}$$
Substitute $u \equiv y/(x - y) \pmod{p}$ to get:
$$\sum_{k=1}^{p - 1} \frac{(p - 1)!u^k}{k!(p - k)!} \equiv 0 \pmod{p}$$
We conclude our theorem is correct.
Idea:
Let:
$$f(u) = \sum_{k=1}^{p - 1} \frac{(p - 1)!u^k}{k!(p - k)!} \equiv 0 \pmod{p}$$
Any $u$ such that $f(u) \equiv 0 \pmod{p}$ gives us a solution to:
$$(y + z)^p \equiv y^p + z^p \pmod{p^2}$$
To see this note:
$$pf(u) = \sum_{k=1}^{p - 1} \binom{p}{k}u^k = (u + 1)^p - (u^p + 1) \equiv 0 \pmod{p^2}$$
$$\implies (y/z + 1)^p \equiv (y/z)^p + 1 \implies (y + z)^p \equiv y^p + z^p \pmod{p^2}$$
Example:
We take $p = 7$, so we have:
$$f(u) \equiv u(u + 1)(u + 3)^{2}(u + 5)^{2} \equiv 0 \pmod{7}$$
Suppose now $u \equiv y/z \equiv -3 \equiv 4 \implies y \equiv 4z \implies x \equiv 5z \pmod{7}$
$$\implies x^{7} = (5z)^{7} \equiv y^{7} + z^{7} \equiv (4z)^{7} + z^{7} \pmod{7^2}$$
$$\implies (5z)^{7} \equiv (4z)^{7} + z^p \pmod{7^2}$$