Prove the relation $\lim_{n\to \infty}\frac 1 {n^{k+1}}\sum_{i=1}^n i^{k}=\frac 1 {k+1}$ for any non negative integer k.
Asked
Active
Viewed 57 times
-1
-
Do you know how to evaluate la sum ?. – Felix Marin Dec 15 '17 at 21:36
-
Only for some cases. – Mattiatore Dec 15 '17 at 21:56
-
Use Stolz-Ces$\mathrm{\grave{a}}$ro Theorem. – Felix Marin Dec 15 '17 at 21:57
2 Answers
1
$$\frac{(n-1)^{k+1}}{k+1}=\int_0^{n-1}x^kdx\le\sum_{j=1}^nj^k\le\int_1^nx^kdx=\frac{n^{k+1}-1}{k+1}$$
Now divide by $n^{k+1}$ and take limits.
ajotatxe
- 65,084
1
Observe that
$$\frac {1}{n^{k+1}}\sum_{i=1}^ni^k=$$ $$\frac{1}{n}\sum_{i=1}^{n}(\frac{i}{n})^k $$ is a Riemann Sum of the function $x\mapsto x^k $.
its limit is the integral $$\int_0^1x^kdx=\frac {1}{k+1}-0$$
hamam_Abdallah
- 62,951