Evaluate $$\lim_{x \to 0}\left[\frac{1}{\log (x+ \sqrt{1+x^2})}-\frac{1}{\log (1-x)}\right]$$
Here is my attempt. I know I made some mistake here. I am getting $-\infty$. Please point me to error. Textbook exercise solution is given as $-\dfrac12$. The given limit is $$\lim_{x \to 0}\frac {\ln (1-x)-\ln(x+\sqrt{1+x^2})}{\ln(x+\sqrt{1+x^2})\ln(1-x)}$$ Applying L'Hôpital's rule $$\lim_{x\to0}\dfrac{\dfrac{-1}{1-x}-\dfrac{1}{x+\sqrt{1+x^2}}\left(1+ \dfrac{x}{\sqrt{1+x^2}}\right)}{\dfrac{1}{x+\sqrt{1+x^2}}\left(1+\dfrac{x}{\sqrt{1+x^2}}\right)\ln(1-x)-\dfrac{\ln(x+\sqrt{1+x^2})}{1-x}}$$ is $$\lim_{x\to0}\dfrac{\dfrac{-1}{1-x}-\dfrac{1}{\sqrt{1+x^2}}}{\dfrac{1}{\sqrt{1+x^2}}\ln({1-x})-\dfrac{\ln (x+\sqrt{1+x^2})}{1-x}} = -\infty.$$