Given sets $A=\{1,2,\dots ,10\}, B=\{1,2,\dots,12\}$. Let $S\subset A\times B$ s.t. $|S|=61$.
Prove that there exist three pairs $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ in $S$ which fulfill:$$ x_1=x_2,\quad |y_1-y_2|=1,\quad |x_2-x_3|=1,\quad y_2=y_3 $$
Progress:
I figured that there are at most $4$ legitimate patterns which a randomly picked pair (e.g $(a,b)$) can fit into:
$1.$ $(a,b-1),(a,b),(a-1,b)$
$2.$ $(a,b-1),(a,b),(a+1,b)$
$3.$ $(a,b+1),(a,b),(a-1,b)$
$4.$ $(a,b+1),(a,b),(a+1,b)$
If those patterns contribute, I'm struggling to define proper sets which relate to them in order to apply the pigeonhole principle.
