From where you left off:
$$\lim_{\Delta x\to 0} \dfrac {\log \left(\dfrac {ax+a\Delta x+b}{ax+b}\right)}{\Delta x}$$
$$=\lim_{\Delta x\to 0} \dfrac {\log \left(1 +\dfrac {a\Delta x}{ax+b}\right)}{\Delta x}$$
$$=\lim_{\Delta x\to 0} \dfrac {\log \left(1 +\dfrac {a\Delta x}{ax+b}\right)}{\Delta x} \cdot \frac{a(ax+b)}{a(ax+b)}$$
$$=\lim_{\Delta x\to 0} \dfrac {\log \left(1 +\dfrac {a\Delta x}{ax+b}\right)}{\frac{a\Delta x}{ax+b}} \cdot \frac{a}{ax+b}$$
Since:
$$\lim_{h \to 0} (1+h)^{\frac 1h} = e$$
$$\lim_{h \to 0} \log(1+h)^{\frac 1h} = \log(e)$$
$$\lim_{h \to 0} \frac{\log(1+h)}{h}=1$$
Then:
$$\lim_{\Delta x\to 0} \dfrac {\log \left(1 +\dfrac {a\Delta x}{ax+b}\right)}{\frac{a\Delta x}{ax+b}} \cdot \frac{a}{ax+b}$$
$$=1 \cdot \frac{a}{ax+b}$$
$$=\frac{a}{ax+b}$$