Find a basis for $U=\{A\in \mathbb{R}^{2\times 2}: A=A^t\}$
Now It easy to see that becuase $$\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$$ We have $$\begin{pmatrix} a & c \\ c & d \end{pmatrix}\in Span\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$$
But how do I slove it using system of linear equations? Do I need to look at
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} x & y \\ z & t \end{pmatrix}=\begin{pmatrix} a & c \\ b & d \end{pmatrix}?$$