Who can help me solving this limit?
$$\lim_{x\to 0 }\frac{\frac{x^3}{6} +\sin x - x }{x^5}$$
I don't need answer Taylor Maclaurin L'Hospital and Derivatives. But I know my answer $\frac 1{120}$.
How can I do?
Who can help me solving this limit?
$$\lim_{x\to 0 }\frac{\frac{x^3}{6} +\sin x - x }{x^5}$$
I don't need answer Taylor Maclaurin L'Hospital and Derivatives. But I know my answer $\frac 1{120}$.
How can I do?
Well you can use L'Hospital rule $5$ times because each time we get $0/0$ form:
$$\lim_{x\to 0} \frac{\cos(x)}{5!} = \frac{1}{5!}$$
By L'Hospital we obtain: $$\lim_{x\rightarrow0}\frac{\frac{x^3}{6}+\sin{x}-x}{x^5}=\lim_{x\rightarrow0}\frac{\frac{x^2}{2}+\cos{x}-1}{5x^4}=\frac{1}{10}\lim_{x\rightarrow0}\frac{x^2-4\sin^2\frac{x}{2}}{x^4}=$$ $$=\frac{1}{10}\lim_{x\rightarrow0}\left(\frac{x-2\sin\frac{x}{2}}{x^3}\cdot\left(1+\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)\right)=\frac{1}{5}\lim_{x\rightarrow0}\frac{1-\cos\frac{x}{2}}{3x^2}=$$ $$=\frac{1}{15}\lim_{x\rightarrow0}\frac{2\sin^2\frac{x}{4}}{x^2}=\frac{1}{120}\lim_{x\rightarrow0}\frac{\sin^2\frac{x}{4}}{\frac{x^2}{16}}=\frac{1}{120}.$$
The limit can be proven using derivatives, and without l'Hopital's rule or series expansions as follows:
$$ \begin{aligned} f(x)&=x^{1/2}+6\frac{\sin\left(x^{1/4}\right)}{x^{1/4}} \\ f'(0)&=\lim_{x\to0}\frac{x^{1/2}+6\frac{\sin\left(x^{1/4}\right)}{x^{1/4}}-6}{x}&=6\lim_{x\rightarrow0}\frac{\frac{x^3}{6}+\sin{x}-x}{x^5} \end{aligned} $$
Another way of approaching the problem is noticing is that the numerator contains the Maclaurin expansion of $\sin$.
$$ \begin{aligned} \sin(x)&\in x-\frac{x^3}{6}+\frac{x^5}{120}+\mathcal{O}(x^7) \\ L&=\lim_{x\rightarrow0}\frac{\sin{x}-\left(x-\frac{x^3}{6}\right)}{x^5} \\ &=\lim_{x\rightarrow0}\frac{\left(\color{red}{x-\frac{x^3}{6}}+\frac{x^5}{120}+\ldots\right)-\left(\color{red}{x-\frac{x^3}{6}}\right)}{x^5} &=\frac1{120} \end{aligned} $$
@user45914123's answer shows an algebraic proof without using derivatives.
$$\begin{align}L= \lim_{x\to 0 }\frac{\frac{x^3}{6} +\sin x - x }{x^5}&= \lim_{x\to 0 }\frac{\frac{x^3}{6} +3\sin(x/3) - 4 \sin^3(x/3) - x }{x^5} &\\&= \lim_{x\to 0 }\frac{x^3/6 -3(x/3)^3/6 - 4 \sin^3(x/3) }{x^5} &\\&+ \lim_{x \to 0} \dfrac{ 3(x/3)^3/6 +3\sin(x/3)-3(x/3)}{3^5(x/3)^5} &\\&= \dfrac{L}{3^4} + \lim_{x\to 0 }\frac{4(x/3)^3 - 4 \sin^3(x/3) }{x^5}&\\&= \dfrac{L}{3^4} &\\&+ \dfrac{4}{3^5}\lim_{x\to 0 }\frac{((x/3) - \sin(x/3))( (x/3)^2 +\sin^2(x/3)+ (x/3) \sin(x/3)) }{(x/3)^5}&\\&=\dfrac{L}{3^4}+ \dfrac{2}{3^5}\end{align}$$
$$\therefore L = \dfrac1{120}$$
It's $\sin(x)\sim x-\frac{1}{6}x^3+\frac{1}{120}x^5,\, x\to0$. Can you take it from here?