To prove that the triangle is equilateral, i have done the following: I have used the cosine rule to simplify the given equation, algebraic manipulation to bring it into the required form, triangle inequality to deduce that each term in the manipulated equation is non-negative and the fact that when the sum of non-negative terms is equal to zero, each term is equal to zero to set up separate equations to finally deduce that all three sides of the triangle are equal.
According to cosine rule, $\cos A=\frac{b^2+c^2-a^2}{2bc}$, $\cos B=\frac{c^2+a^2-b^2}{2ca}$ and $\cos C=\frac{a^2+b^2-c^2}{2ab}$.
$\cos A +\cos B +\cos C=\frac{3}{2}$
$\implies\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=\frac{3}{2}$
$\implies\frac{ab^2+ac^2-a^3+bc^2+ba^2-b^3+ca^2+cb^2-c^3}{2abc}=\frac{3}{2}$
$\implies ab^2+ac^2-a^3+bc^2+ba^2-b^3+ca^2+cb^2-c^3=3abc$
$\implies ab^2+ac^2+bc^2+ba^2+ca^2+cb^2=a^3+b^3+c^3+3abc$
$\implies ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc=a^3+b^3+c^3-3abc$
$\implies ca^2-2abc+cb^2+ab^2-2abc+ac^2+bc^2-2abc+ba^2=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
$\implies c(a^2-2ab+b^2)+a(b^2-2bc+c^2)+b(c^2-2ca+a^2)=\frac{1}{2}(a+b+c)(2a^2+2b^2+c^2-2ab-2bc-2ca)$
$\implies 2[c(a-b)^2+a(b-c)^2+b(c-a)^2]=(a+b+c)(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2)$
$\implies 2c(a-b)^2+2a(b-c)^2+2b(c-a)^2=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$
$\implies 2c(a-b)^2+2a(b-c)^2+2b(c-a)^2=(a+b+c)(a-b)^2+(a+b+c)(b-c)^2+(a+b+c)(c-a)^2$
$\implies 0=(a+b+c)(a-b)^2-2c(a-b)^2+(a+b+c)(b-c)^2-2a(b-c)^2+(a+b+c)(c-a)^2-2b(c-a)^2$
$\implies (a+b+c)(a-b)^2-2c(a-b)^2+(a+b+c)(b-c)^2-2a(b-c)^2+(a+b+c)(c-a)^2-2b(c-a)^2=0$
$\implies (a+b+c-2c)(a-b)^2+(a-2a+b+c)(b-c)^2+(a+b-2b+c)(c-a)^2=0$
$\implies (a+b-c)(a-b)^2+(-a+b+c)(b-c)^2+(a-b+c)(c-a)^2=0$
$\implies (a+b-c)(a-b)^2+(b+c-a)(b-c)^2+(c+a-b)(c-a)^2=0$
According to triangle inequality, $a+b>c, b+c>a$ and $c+a>b$.
$\therefore a+b-c>0, b+c-a>0$ and $c+a-b>0$.
When the sum of non-negative terms is equal to zero, each term$=0$.
$\therefore (a+b-c)(a-b)^2+(b+c-a)(b-c)^2+(c+a-b)(c-a)^2=0$
$\implies (a+b-c)(a-b)^2=0, (b+c-a)(b-c)^2=0$ and $(c+a-b)(c-a)^2=0$
$\implies a=b, b=c$ and $c=a$
$\implies a=b=c$
$\therefore$ The triangle is equilateral.