I don't have much to start the problem, as I have trouble approaching it. What method of solving should I use here?
-
What about $(a+b+c)^2$ ? – Atmos Jan 13 '18 at 22:34
-
@Atmos You get an extra 2 and the wrong sign on the RHS. – N. S. Jan 13 '18 at 22:35
4 Answers
$$(a^2+b^2+c^2)-(ab+ac+bc) = \frac{1}{2}\left[(a-b)^2+(a-c)^2+(b-c)^2\right]\geq 0 $$ and the middle term equals zero iff $a=b=c$.
Alternative approach: by the Cauchy-Schwarz inequality $$\left|ab+ac+bc\right|\leq \sqrt{a^2+b^2+c^2}\sqrt{b^2+c^2+a^2} = a^2+b^2+c^2$$ and the equality holds iff the vectors $(a,b,c)$ and $(b,c,a)$ are linearly dependent, i.e. iff $a=b=c$.
- 353,855
-
5in case of interest, "diagonalizing" the form gives a certain binary, same conclusion. $$ \color{blue}{ x^2 + y^2 + z^2 - yz - zx - xy = \frac{1}{4} (2x-y-z)^2 + \frac{3}{4} (y-z)^2 } $$ – Will Jagy Jan 13 '18 at 22:59
-
-
@ParamanandSingh the version with no fractions is positive binary $u^2 + uv + v^2,$ where $u = x-y,$ $v = y-z.$ – Will Jagy Jan 14 '18 at 15:08
Finding a change of basis so that the Hessian matrix $H$ is congruent to a diagonal matrix $D$ leads to $$ Q^T D Q = H $$ Sylvester's Law of Inertia says that the diagonal matrix $D$ must have two positive entries and a zero on the diagonal. These need not be the diagonals (except for the zero). $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ - \frac{ 1 }{ 2 } & 1 & 0 \\ - \frac{ 1 }{ 2 } & - 1 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 2 & 0 & 0 \\ 0 & \frac{ 3 }{ 2 } & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } \\ 0 & 1 & - 1 \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 2 & - 1 & - 1 \\ - 1 & 2 & - 1 \\ - 1 & - 1 & 2 \\ \end{array} \right) $$ or $$ \color{blue}{ x^2 + y^2 + z^2 - yz - zx - xy = \frac{1}{4} (2x-y-z)^2 + \frac{3}{4} (y-z)^2 } $$
This expression also tells us that the quadratic form is zero only when $x=y=z$
A version without fractions uses $u = x-y,$ $v = y-z,$ then $$ u^2 + uv + v^2 = x^2 + y^2 + z^2 - yz - zx - xy. $$ The conclusion is the same, as $u^2 + uv + v^2$ is strictly positive unless $u=v=0.$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-==-=-=-=-=-=-=-=-=-=-=-=-=-=-=
I put a bunch of information about the algorithm below at reference for linear algebra books that teach reverse Hermite method for symmetric matrices
I call the symmetric matrix of interest $H$ for Hessian:
$$ H = \left( \begin{array}{rrr} 2 & - 1 & - 1 \\ - 1 & 2 & - 1 \\ - 1 & - 1 & 2 \\ \end{array} \right) $$
$$ E_j^T D_{j-1} E_j = D_j $$ $$ P_{j-1} E_j = P_j $$ $$ E_j^{-1} Q_{j-1} = Q_j $$ $$ P_j Q_j = I $$ $$ P_j^T H P_j = D_j $$ $$ Q_j^T D_j Q_j = H $$
$$ H = \left( \begin{array}{rrr} 2 & - 1 & - 1 \\ - 1 & 2 & - 1 \\ - 1 & - 1 & 2 \\ \end{array} \right) $$
==============================================
$$ E_{1} = \left( \begin{array}{rrr} 1 & \frac{ 1 }{ 2 } & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{1} = \left( \begin{array}{rrr} 1 & \frac{ 1 }{ 2 } & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{1} = \left( \begin{array}{rrr} 1 & - \frac{ 1 }{ 2 } & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{1} = \left( \begin{array}{rrr} 2 & 0 & - 1 \\ 0 & \frac{ 3 }{ 2 } & - \frac{ 3 }{ 2 } \\ - 1 & - \frac{ 3 }{ 2 } & 2 \\ \end{array} \right) $$
==============================================
$$ E_{2} = \left( \begin{array}{rrr} 1 & 0 & \frac{ 1 }{ 2 } \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{2} = \left( \begin{array}{rrr} 1 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{2} = \left( \begin{array}{rrr} 1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{2} = \left( \begin{array}{rrr} 2 & 0 & 0 \\ 0 & \frac{ 3 }{ 2 } & - \frac{ 3 }{ 2 } \\ 0 & - \frac{ 3 }{ 2 } & \frac{ 3 }{ 2 } \\ \end{array} \right) $$
==============================================
$$ E_{3} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{3} = \left( \begin{array}{rrr} 1 & \frac{ 1 }{ 2 } & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{3} = \left( \begin{array}{rrr} 1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } \\ 0 & 1 & - 1 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{3} = \left( \begin{array}{rrr} 2 & 0 & 0 \\ 0 & \frac{ 3 }{ 2 } & 0 \\ 0 & 0 & 0 \\ \end{array} \right) $$
==============================================
$$ P^T H P = D $$ $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ \frac{ 1 }{ 2 } & 1 & 0 \\ 1 & 1 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 2 & - 1 & - 1 \\ - 1 & 2 & - 1 \\ - 1 & - 1 & 2 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & \frac{ 1 }{ 2 } & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 2 & 0 & 0 \\ 0 & \frac{ 3 }{ 2 } & 0 \\ 0 & 0 & 0 \\ \end{array} \right) $$ $$ Q^T D Q = H $$ $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ - \frac{ 1 }{ 2 } & 1 & 0 \\ - \frac{ 1 }{ 2 } & - 1 & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 2 & 0 & 0 \\ 0 & \frac{ 3 }{ 2 } & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } \\ 0 & 1 & - 1 \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 2 & - 1 & - 1 \\ - 1 & 2 & - 1 \\ - 1 & - 1 & 2 \\ \end{array} \right) $$
- 139,541
-
That's neat. what's the name of this method? Any sources I could read? – MaximusFastidiousIrreverence Jan 14 '18 at 00:33
-
1@AmateurMathGuy I put what I had at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr In the end, I have it construct $P$ and $Q = P^{-1}$ simultaneously. The few sources use "pivots" – Will Jagy Jan 14 '18 at 00:39
-
Thank you. Somehow I don't think this is gone over in the first exposure to linear algebra, though I know diagonalization is... – MaximusFastidiousIrreverence Jan 14 '18 at 00:46
-
1@AmateurMathGuy apparently this is ( at least a version thereof) is given fairly early in some countries, but not the U.S. Such things are familiar to me because of my long work in quadratic forms with integer coefficients. Most of my Q.F. books write this in "repeated completing the square" order, which requires a bit of cleverness sometimes. Oh, the outcome is sometimes called "congruence diagonalization" – Will Jagy Jan 14 '18 at 00:51
- Suppose suppose loss of generality that $a\le b\le c$ then $\begin{cases}b=a+u&u\ge 0\\c=b+v&v\ge 0\end{cases}$
$a^2+b^2+c^2-(ab+bc+ca)=u^2+\underbrace{uv}_{\ge 0}+v^2=0\implies u=v=0\implies a=b=c$
- Another interesting substitution is $c=ta+(1-t)b$
$a^2+b^2+c^2-(ab+bc+ca)=(a-b)^2\underbrace{(t^2-t+1)}_{\text{no real root}}=0\implies a=b\implies a=b=c$
- 28,563