I'm trying to check whether or not this set is linearly independent for all $n$, where $A$ is $n \times n$ and $A, A^2, \dots, A^{n^2}$ are distinct matrices and $I_n$ is the identity matrix.
Clearly, if we take $n = 2$, and $A = 3 I_n$ then the set $\{I, A, A^2, A^3, A^4 \}$ is not linearly independent. Is this good enough?