I thought it might be instructive to present an approach that relies only on straightforward arithmetic along with knowledge of the Taylor series $\log(1+x)=\sum_{k=1}^\infty \frac{(-1)^{k-1}x^k}{k}$.
Note that we can write
$$\begin{align}
\sum_{k=1}^n \frac{1}{k+n}&=\sum_{k=n+1}^{2n}\frac1k\\\\
&=\sum_{k=1}^{2n}\frac1k -\sum_{k=1}^n\frac1k\\\\
&=\sum_{k=1}^n\left(\frac{1}{2k-1}+\frac1{2k}\right)-\sum_{k=1}^n\frac1k\\\\
&=\sum_{k=1}^n\left(\frac{1}{2k-1}-\frac{1}{2k}\right)\\\\
&=\sum_{k=1}^{2n}\frac{(-1)^{k-1}}{k}\tag1
\end{align}$$
Using the Taylor series for $\log(1+x)=\sum_{k=1}^\infty\frac{(-1)^{k-1}x^k}{k}$, we see that
$$\log(2)=\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k}\tag2$$
Finally, letting $n\to \infty$ in $(1)$, we see from $(2)$ that
$$\lim_{n\to \infty}\sum_{k=1}^n \frac1{k+n}=\log(2)$$
\left(and\right). This will automatically adjust the size of brackets according to their content. – Jaideep Khare Jan 26 '18 at 16:42