We have that
$$
\eqalign{
& S(m) = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,m} \right)} {\left( \matrix{
m - k \cr
k \cr} \right)} = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,m} \right)} {\left( \matrix{
m - 1 - k \cr
k \cr} \right) + \left( \matrix{
m - 1 - k \cr
k - 1 \cr} \right)} = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,m - 1} \right)} {\left( \matrix{
m - 1 - k \cr
k \cr} \right)} + \sum\limits_{\left( {1\, \le } \right)\,k\,\left( { \le \,m - 1} \right)} {\left( \matrix{
m - 2 - \left( {k - 1} \right) \cr
k - 1 \cr} \right)} = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,m - 1} \right)} {\left( \matrix{
m - 1 - k \cr
k \cr} \right)} + \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,m - 2} \right)} {\left( \matrix{
m - 2 - j \cr
j \cr} \right)} = \cr
& = S(m - 1) + S(m - 2) \cr}
$$
which is the same recurrence as for Fibonacci Numbers, however
$$
\left\{ \matrix{
S(0) = 1 \hfill \cr
S(1) = 1 \hfill \cr} \right.
$$
and therefore
$$
S(m) = F_{\,m + 1} \quad \left| {\;0 \le m} \right.
$$