Prove
$$ \cos^{-1}\frac{4}{5}+\cos^{-1}\frac{12}{13}=\cos^{-1}\frac{33}{65} $$
My Attempt:
Let $\alpha=\cos^{-1}\frac{4}{5}\implies0<\alpha\leq\pi$ and $\beta=\cos^{-1}\frac{12}{13}\implies0<\beta<\pi$,
thus $0\leq\alpha+\beta\leq2\pi$ $$ \cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta=\frac{4}{5}.\frac{12}{13}-\frac{3}{5}.\frac{5}{13}=\frac{33}{65}=\cos\Big[\cos^{-1}\frac{33}{65}\Big]\\ \implies \cos^{-1}\frac{33}{65}=2n\pi\pm(\alpha+\beta) $$ case 1: If $0\leq\alpha+\beta\leq\pi$, $$ \cos^{-1}\frac{33}{65}=\alpha+\beta=\cos^{-1}\frac{4}{5}+\cos^{-1}\frac{12}{13} $$ case 2: If $\pi<\alpha+\beta\leq 2\pi$, $$ \cos^{-1}\frac{33}{65}=2\pi-(\alpha+\beta) $$
Is there any thing wrong with my approach and how do I eliminate case 2 in similar problems ?