Let $A=[a_{i,j}]\in \mbox{Mat}_n \mathbb{C}$. We define $A^* =[\bar{a_{ji}}]$. Describe $\det(A^*)$ in terms of $\det(A)$.
My work:
Note $A^*$ is hermitic matrix of $n\times n$. this implies elements of the main diagonal of $A^*$ are reals.
Moreover, this matrix $A^*$ is the transposed conjugated of $A$. for example for $A_{2\times 2}$ matrix
$A=\begin{pmatrix} q & a+ib\\ a-ib & k \end{pmatrix}$ with $a,b,q,k\in \mathbb{R}^2$
Then
$A^*=\begin{pmatrix} q & a-ib\\ a+ib & k \end{pmatrix}$
This implies $det(A)=qk-(a+ib)(a-ib)=qk-(a^2-aib+aib-i^2b^2)=qk-a^2+i^2b^2=qk-a^2-b^2$
and
$det(A^*)=qk-(a-ib)(a+ib)=qk-a^2-b^2$
then, $det(A)=det(A^*)$
Here my question:
I think this happen for $A_{n\times n}$ but i don't know why... Can someone help me to solve this?