$$\int_0^\infty \frac{1}{1+x^{17}}\cdot \frac{1}{1+x^2}\ dx$$
I have checked the solution which used omega (a cube root of unity). But I required a simple answer to my question.
$$\int_0^\infty \frac{1}{1+x^{17}}\cdot \frac{1}{1+x^2}\ dx$$
I have checked the solution which used omega (a cube root of unity). But I required a simple answer to my question.
$$I=\int^{\infty}_{0}\frac{1}{(1+x^{17})}\cdot \frac{1}{1+x^2}dt\cdots \cdots (+)$$
Put $\displaystyle x=\frac{1}{t}$ and $d =-\frac{1}{t^2}dt$
$$I=\int^{\infty}_{0}\frac{t^{17}}{(1+t^{17})}\cdot \frac{1}{1+t^2}dt$$
$$I=\int^{\infty}_{0}\frac{x^{17}}{(1+x^{17})}\cdot \frac{1}{1+x^2}dt\cdots \cdots (++)$$
So $$2I=\int^{\infty}_{0}\frac{1}{1+x^2}dx$$