(Edited in response to Did and PrithiviRaj's comments.)
$$
\begin{aligned}
f_x (0,0) &= \lim_{h \to 0} \frac{f(h,0)-f(0,0)}{h} \\
&= \lim_{h \to 0} \frac{0\sin\frac1h - 0}{h} = 0
\end{aligned} \\
\begin{aligned}
f_y (0,0) &= \lim_{k \to 0} \frac{f(0,k)-f(0,0)}{k} \\
&= \lim_{k \to 0} \frac{k - 0}{k} = 1
\end{aligned}
$$
In the definition of differentiability, approach the point $(0,0)$ via the curve $y = x^2$ to see that the limit
$$ \lim_{(h,k) \to (0,0)} \frac{f(h,k) - f(0,0) - 0 \cdot h - 1 \cdot k}{\sqrt{h^2+k^2}} \tag{*} \label1$$
can't be defined. Take $k = h^2$.
\begin{equation}
\begin{aligned}
\frac{f(h,h^2)-f(0,0)-h^2}{\sqrt{h^2+h^4}}
&= \frac{h^2 (\sin \frac{1}{h} - 1)}{\sqrt{h^2+h^4}} \\
&= \frac{\sin\frac{1}{h} - 1}{\sqrt{1 + \frac{1}{h^2}}}
\end{aligned}
\tag{$h\ne0$}
\label{df1}
\end{equation}
Observe that the denominator $\sqrt{1+1/h^2} \to 1$ as $h \to 0$, but
the limit of $\sin(1/h)$ is undefined.
To see this,
- take $h_n = 1/(n\pi)$ so that $h_n\to0$ and $\sin(1/h_n) = 0$; but
- take $h'_n = 1/((2n+1/2)\pi)$ so that $h'_n\to0$ and $\sin(1/h'_n) = 1$.
Hence \eqref{1} is undefined, and $f$ is not differentiable at $(0,0)$.