I need to show that
$1+ \frac{1}{p} + \frac{1}{p^2} + ... + \frac{1}{p^k} = \frac{p^{k+1}-1}{p^k(p-1)}$ , where $p$ is a prime number.
I have started by doing the following:
$$1 + p^{-1} + p^{-2} + ... p^{-k} = 1 + (p + p^2 + ... + p^k)^{-1} = 1 + [p(1+p+p^2+...+p^{k-1})] ^{-1}$$
= $$1 + [p(\frac{p^k-1}{p-1})]^{-1} = 1 + \frac {p-1}{p^{k+1}+p} =\frac {p^{k+1} - 1} {p^{k+1} - p} $$
I have $p$ instead of $p^k$ in the last denominator.
UPD.