Consider a successions space $l_p$, for $p\geqslant1$ in which $x=(x_1,x_2,...,x_k...)$ and $\lim_{n\to\infty} x_n=x_0$. The metric defined is the following $\rho(x,y)=\sum_{k=1}^{\infty}\frac{1}{2^k}\frac{|x_k-y_k|}{1+|x_k-y_k|}$ Since the series converges $\forall \epsilon>0\exists\:n_0,\forall n\geqslant n_0$ $\rho(x,y)=\sum_{k=1}^{\infty}\frac{1}{2^k}\frac{|x_{n,k}-x_{0,k}|}{1+|x_{n,k}-x_{0,k}|}<\epsilon$.$k=1,2,3...$
Question:
I do not understand the $k$ in the following metric $\rho(x,y)=\sum_{k=1}^{\infty}\frac{1}{2^k}\frac{|x_{n,k}-x_{0,k}|}{1+|x_{n,k}-x_{0,k}|}$. Does the $k$ indicator implies the sequence (series) is defined on $\mathbb{R}^n$? Does the $k$ stands for each variable in which the sequence converges in the following way $|x_{n,k}-x_{0,k}|$ for each $k$? If not what is the meaning of $k$?