Given an equation $\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} = 4$, how to solve this problem in positive integers?
I've tried to assume $a\le b\le c$ and that $b=a+k_1, c=a+k_2$. So the equation become
$$\frac{a}{2a+k_1+k_2} + \frac{a+k_1}{2a+k_2} + \frac{a+k_2}{2a+k_1} = 4$$
or equivalently,
$$\frac{1}{2+\frac{k_1}{a}+\frac{k_2}{a}} + \frac{1+\frac{k_1}{a}}{2+\frac{k_2}{a}} + \frac{1+\frac{k_2}{a}}{2+\frac{k_1}{a}} = 4$$
Now let $x= \frac{k_1}{a}, y= \frac{k_2}{a}$, it is sufficient to find all positive rational solutions of $\frac{1}{2+x+y} + \frac{1+x}{2+y} + \frac{1+y}{2+x} = 4$.