This can be done without PNT.
From my answer in this one: Prove $\sum_{d \leq x} \mu(d)\left\lfloor \frac xd \right\rfloor = 1 $
We have for $x\geq 1$,
$$
\sum_{d\leq x} \mu(d) \left\lfloor \frac xd \right \rfloor =1
$$
Write the LHS as
$$
\sum_{d\leq x} \mu(d) \left( \frac xd -\left\{ \frac xd \right\} \right) = 1
$$
where $\{ x\}$ is the fractional part of $x$.
Then we have
$$
\sum_{d\leq x } \mu(d) \frac xd = 1+\sum_{d\leq x} \mu(d)\left\{ \frac xd \right\}.
$$
If $x$ is a positive integer, then the RHS is bounded by
$$
\left | 1+\sum_{d\leq x} \mu(d)\left\{ \frac xd \right\}\right|\leq 1+ x-1=x.
$$
Note that $\left\{\frac xx\right\} = 0$.
Therefore if $x$ is a positive integer,
$$
\left| \sum_{d\leq x} \mu(d)\frac xd \right|\leq x.
$$
This immediately gives for $x$ positive integer,
$$
\left| \sum_{d\leq x} \frac{\mu(d)}d\right|\leq 1
$$