$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\mrm{Li}_{2}\pars{z} & = -\int_{0}^{z}{\ln\pars{1 - u} \over u}\,\dd u
\,\,\,\stackrel{u/z\ \mapsto\ u}{=}\,\,\,
-\int_{0}^{1}{\ln\pars{1 - zu} \over u}\,\dd u
\\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\,
\int_{0}^{1}\ln\pars{u}\,{-z \over 1 - zu}\,\dd u \,\,\,\stackrel{u\ \mapsto\ 1/u}{=}\,\,\,
\int_{\infty}^{1}\ln\pars{1/u}\,{-z \over 1 - z/u}
\pars{-\,{\dd u \over u^{2}}}
\\[5mm] & =
-\int_{1}^{\infty}{\ln\pars{u} \over u}\,{z \over z - u}
\,\dd u =
-\int_{1}^{\infty}{\ln\pars{u} \over u}
\,\pars{1 + {u \over z - u}}\,\dd u
\end{align}
Then, with $\ds{r \in \mathbb{R}}$:
\begin{align}
&\bbox[10px,#ffd]{\mrm{Li}_{2}\pars{r + \ic 0^{+}} - \mrm{Li}_{2}\pars{r - \ic 0^{+}}}
\\[5mm] = &\
-\int_{1}^{\infty}\ln\pars{u}\
\overbrace{\pars{{1 \over r + \ic 0^{+} - u} - {1 \over r - \ic 0^{+} - u}}}
^{\ds{-2\pi\ic\,\delta\pars{r - u}}}\
\,\dd u
\\[5mm] = &\ \bbx{2\pi\ic\bracks{r > 1}\ln\pars{r}}
\end{align}