You can use the standard formula:
$$1+\cos x+\cos 2x+\dots +\cos mx=\frac{\sin\dfrac{(m+1)x}2}{\sin\dfrac{x}2}\,\cos\dfrac{mx}2.$$
Here, with $x=2\theta$, one obtains
\begin{align}
1 +{} & 2 \cos2\theta + \dots+2 \cos2m\theta =2(1 + \cos2\theta + \dots+\cos2m\theta)-1 \cr
={} &\frac{2\sin(m+1)\theta}{\sin\theta}\,\cos m\theta -1 = \frac{\sin\bigl((m+1)+m\bigr)\theta+\sin\bigl((m+1)-m\bigr)\theta}{\sin\theta}-1 \cr
={}&\frac{\sin(2m+1)\theta+\sin\theta}{\sin\theta}-1 =\frac{\sin(2m+1)\theta}{\sin\theta}.
\end{align}