I want to prove that $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$. Is this a valid/good/correct proof?
Let $\lim_{x \to a} f(x) = L_1$ and $\lim_{x \to a} g(x) = L_2$. The righthand side can be written as $L_1L_2$.
Then $(\lim_{x \to a} f(x) - L_1) = \lim_{x \to a} f(x) - \lim_{x \to a} L_1 = L_1 - L_1 = 0$ and $(\lim_{x \to a} g(x) - L_2) = \lim_{x \to a} g(x) - \lim_{x \to a} L_2 = L_2 - L_2 = 0$.
Let $\epsilon > 0$. There exists a $\delta_1$ such that $|f(x)-L_1| < \sqrt{\epsilon}$ whenever $0 < |x-a| < \delta_1$, and there exists a $\delta_2$ such that $|g(x)-L_2| < \sqrt{\epsilon}$ whenever $0 < |x-a| < \delta_2$.
Therefore, suppose $0 < |x-a| < \delta$ where $\delta = \min(\delta_1, \delta_2)$ such that $0 < |x-a| < \delta_1$ and $0 < |x-a| < \delta_2$ are both satisfied. Then $|(f(x)-L_1)(g(x)-L_2)| < \sqrt{\epsilon}\sqrt{\epsilon} = \epsilon$.
Consider the expansion $(f(x)-L_1)(g(x)-L_2) = f(x)g(x) - L_2f(x) - L_1g(x) + L_1L_2$. Rearranged, we get $f(x)g(x) = (f(x)-L_1)(g(x)-L_2) + L_2f(x) + L_1g(x) - L_1L_2$.
We now have:
$\lim_{x \to a} f(x)g(x) = \lim_{x \to a}((f(x)-L_1)(g(x)-L_2) + L_2f(x) + L_1g(x) - L_1L_2)$
$\lim_{x \to a} f(x)g(x) = \lim_{x \to a}(f(x)-L_1)(g(x)-L_2) + \lim_{x \to a} L_2f(x) + \lim_{x \to a}L_1g(x) - \lim_{x \to a}L_1L_2$
$\lim_{x \to a} f(x)g(x) = 0 + L_1L_2 + L_1L_2 - L_1L_2$
$\lim_{x \to a} f(x)g(x) = L_1L_2$