Let
$$\lim_{x \to a} f(x) = L$$
$$\lim_{x \to a} g(x) = M$$
Where $L$ and $M$ are finite reals.
Then I want to prove that
$$\lim_{x \to a} f(x) g(x) = LM$$
Let $\epsilon > 0$. We need a $\delta > 0$ such that for all $x$ we have $0 < |x-a| < \delta$ implying $|f(x)g(x) - LM| < \epsilon$.
Rearrange:
$$\begin{align}|f(x)g(x)-LM|&=|f(x)g(x)-Lg(x)+Lg(x)-LM|\\ &=|g(x)(f(x)-L)+L(g(x)-M)|\\ &\le|g(x)||f(x)-L|+|L||g(x)-M| \\ &\lt|g(x)||f(x)-L|+(|L| + 1)|g(x)-M| < \epsilon\end{align}$$
Since the limits for $g(x)$ and $M$ approach the same value $M$, there exists a $\delta_1 > 0$ such that for all $x$, $0 < |x-a| < \delta_1$ implies $|g(x) - M| < \frac{\epsilon}{2(|L|+1)}$. Then:
$$\begin{align}|f(x)g(x)-LM| &\lt |g(x)||f(x)-L|+(|L|+1)|g(x)-M|\\ &<|g(x)||f(x)-L|+(|L|+1)\frac{\epsilon}{2(|L|+1)} \\ &=|g(x)||f(x)-L|+\frac{\epsilon}{2} = \epsilon \\ \end{align}$$
Since the limits for $f(x)$ and $L$ approach the same value $L$, there exists a $\delta_2 > 0$ such that for all $x$, $0 < |x-a| < \delta_2$ implies $|f(x) - L| < \frac{\epsilon}{2(|M|+1)}$. Then:
$$\begin{align}|f(x)g(x)-LM| &\lt |g(x)||f(x)-L|+\frac{\epsilon}{2} \\ &<|g(x)|\frac{\epsilon}{2(|M|+1)}+\frac{\epsilon}{2} = \epsilon \\ \end{align}$$
Now we prove $|g(x)| \leq |M|+1$:
$$|g(x)| = |g(x) - M + M| \leq |g(x) - M| + |M| \leq |M|+1$$
Subtracting $|M|$ from both sides, we see that:
$$|g(x) - M| \leq 1$$
Since the limits for $g(x)$ and $M$ approach the same value $M$, there exists a $\delta_3$ such that for all $x$, $0 < |x-a| < \delta_3$ implies $|g(x) - M| < 1$.
$$\begin{align}|f(x)g(x)-LM| &\lt |g(x)|\frac{\epsilon}{2(|M|+1)}+\frac{\epsilon}{2} \\ &< (|M|+1)\frac{\epsilon}{2(|M|+1)}+\frac{\epsilon}{2} \\ &= \frac{\epsilon}{2}+\frac{\epsilon}{2} = \epsilon \\ \end{align}$$
This is true granted that we set $\delta = \min(\delta_1, \delta_2, \delta_3)$.
Is my proof correct and accurate? Have I actually proved the rule?