How can I prove that $0\leq{f(x)}<\frac{1}{2}$ for every $x\neq{0}$, when
$$f(x)= \begin{cases} \frac{1-\cos(x)}{x^2}, & x\neq{0} \\ \frac{1}{2}, & x=0 \end{cases} $$
I know how to see that $0\leq{f(x)}$ but I dont know how to prove the other boundary.