0

The determinant of the following $14 \times 14$ matrix

$$\begin{bmatrix} D_1 & D_2 \\ D_3 & D_4 \end{bmatrix}$$

where the $D_i$ blocks are $7 \times 7$ diagonal matrices given by

$$D_1 = \mbox{diag} (a_1, a_2, \ldots a_7)$$

$$D_2 = \mbox{diag} (a_8, a_9, \ldots a_{14})$$

$$D_3 = \mbox{diag} (a_8, a_{14}, a_{13},\ldots a_9)$$

$$D_4 = \mbox{diag} (a_1, a_7, a_6, \ldots a_2)$$

is

$$(a_1^2-a_8^2)(a_2a_7-a_9a_{14})^2(a_3a_6-a_{10}a_{13})^2(a_4a_5-a_{11}a_{12})^2$$

Am I correct?

PAMG
  • 4,440

1 Answers1

3

A classical result is the following one.

Being given a $2 \times 2$ block matrix with square blocks:

$$\mathbf{S} := \begin{pmatrix} A & B\\ C & D \end{pmatrix},$$

if $DC=CD$ [which is the case here : any diagonal matrix commutes with any other], then :

$$\det(S)=\det(AD-BC)$$

Can you take it from here ?

Reference: (Determinant of block matrix with commuting blocks)

Jean Marie
  • 81,803