The determinant of the following $14 \times 14$ matrix
$$\begin{bmatrix} D_1 & D_2 \\ D_3 & D_4 \end{bmatrix}$$
where the $D_i$ blocks are $7 \times 7$ diagonal matrices given by
$$D_1 = \mbox{diag} (a_1, a_2, \ldots a_7)$$
$$D_2 = \mbox{diag} (a_8, a_9, \ldots a_{14})$$
$$D_3 = \mbox{diag} (a_8, a_{14}, a_{13},\ldots a_9)$$
$$D_4 = \mbox{diag} (a_1, a_7, a_6, \ldots a_2)$$
is
$$(a_1^2-a_8^2)(a_2a_7-a_9a_{14})^2(a_3a_6-a_{10}a_{13})^2(a_4a_5-a_{11}a_{12})^2$$
Am I correct?