Let $n\in\mathbb{N}$ such that ${n}>{0}$.
Show that $${\frac{x_1^{n}+x_2^{n}+...+x_n^{n}}{x_1x_2...x_n}+\frac{\sqrt[n]{x_1x_2...x_n}}{x_1+x_2+...+x_n}}\ge{n+\frac{1}{n}}$$ when $x_k > 0, \forall k$.
I thought I can use AM GM inequality, but if I try to break it in two smaller pieces and apply AMGM I get a false affirmation for $\frac{\sqrt[n]{x_1x_2...x_n}}{\ x_1+\ x_2+...+x_n}$.
Any help please?