Since there is a single yellow bead, we can use it as a reference point. As we proceed clockwise around the bracelet from the yellow bead, we must choose which two of the remaining six positions will be filled with red beads. There are $$\binom{6}{2} = 15$$ ways to do this.
However, a bracelet can be removed from the wrist, twisted, and placed back on the wrist. Consequently, clockwise and counterclockwise (anticlockwise) arrangements are equivalent. Of these $15$ arrangements, the three in which both red beads are equidistant from the yellow bead are the same when the bracelet is reversed. The other $12$ are not. They can be placed in $6$ matching pairs, so there are $3 + 6 = 9$ distinguishable bracelets that can be formed.



