Solve the equation: $$\cos^2x+\cos^22x+\cos^23x=1$$ IMO 1962/4
My first attempt in solving the problem is to simplify the equation and express all terms in terms of $\cos x$. Even without an extensive knowledge about trigonometric identities, the problem is solvable.
$$ \begin{align} \cos^22x&=(\cos^2x-\sin^2x)^2\\ &=\cos^4x+\sin^4x-2\sin^2\cos^2x\\ &=\cos^4+(1-\cos^2x)^2-2(1-\cos^2)\cos^2x\\ &=\cos^4+1-2\cos^2x+\cos^4x-2\cos^2x+2\cos^4x\\ &=4\cos^4x-4\cos^2x+1 \end{align} $$
Without knowledge of other trigonometric identities, $\cos3x$ can be derived using only Ptolemy's identities. However for the sake of brevity, let $\cos 3x=4\cos^3x-3\cos x$: $$ \begin{align} \cos^23x&=(4\cos^3x-3\cos x)^2\\ &=16\cos^6x+4\cos^2x-24\cos^4x \end{align} $$
Therefore, the original equation can be written as: $$\cos^2x+4\cos^4x-4\cos^2x+1+16\cos^6x+4\cos^2x-24\cos^4x-1=0$$ $$-20\cos^4x+6\cos^2x+16\cos^6x=0$$ Letting $y=\cos x$, we now have a polynomial equation: $$-20y^4+6y^2+16y^6=0$$ $$y^2(-20y^2+6y+16y^4)=0\Rightarrow y^2=0 \Rightarrow x=\cos^{-1}0=\bbox[yellow,10px]{90^\circ}$$ From one of the factors above, we let $z=y^2$, and we have the quadratic equation: $$16z^2-20z+6=0\Rightarrow 8z^2-10z+3=0$$ $$(8z-6)(z-\frac12)=0\Rightarrow z=\frac34 \& \ z=\frac12$$ Since $z=y^2$ and $y=\cos x$ we have: $$\biggl( y\rightarrow\pm\frac{\sqrt{3}}{2}, y\rightarrow\pm\frac{\sqrt{2}}2 \biggr)\Rightarrow \biggl(x\rightarrow\cos^{-1}\pm\frac{\sqrt{3}}{2},x\rightarrow\cos^{-1}\pm\frac{\sqrt{2}}2\biggr)$$ And thus the complete set of solution is: $$\bbox[yellow, 5px]{90^\circ, 30^\circ, 150^\circ, 45^\circ, 135^\circ}$$
As I do not have the copy of the answers, I still hope you can verify the accuracy of my solution.
But more importantly...
Seeing the values of $x$, is there a more intuitive and simpler way of finding $x$ that does away with the lengthy computation?