Let $g(x)=f(x+1)$ so that $g^{(n)}(0)=f^{(n)}(1)$.
Then since $\log(1+x) = \int dx/(1+x) =\sum_{n=0}^\infty {(-1)^n x^{n+1}/ (n+1)}$
$$g(x)={\log(1+x)\over1+x}=\sum_{n=0}^\infty(-1)^nx^n \sum_{n=0}^\infty {(-1)^n x^{n+1} \over n+1}=\sum_{n=0}^\infty(-1)^nx^n \sum_{m=1}^\infty {(-1)^{m-1} x^{m} \over m} =
\sum_{n=1}^\infty\left(\sum_{k=1}^n{(-1)^{n-1} \over k}\right) x^n$$
and apply Taylor's formula (as well as the identity $(-1)^{n-1}=(-1)^{n+1}$).
Alternate I
Let $I(x) = \int f(1+x) \; dx = {1\over2}(\log(1+x))^2$, so that $I^{(n+1)}(0)=f^{(n)}(1)$.
Then
$$I(x) = {1\over2}\left(\sum_{m=1}^\infty {(-1)^{m-1} x^{m} \over m}\right)^2
=\sum_{m=2}^\infty\left(\sum_{k=1}^m{(-1)^{m-2}\over2k(m-k)}\right)x^n
=\sum_{m=2}^\infty\left(\sum_{k=1}^m{(-1)^{m-2}\over2m}\left({1\over k}+{1\over m-k}\right)\right)x^m\,,$$
which, since $k$ and $m-k$ each run over the integers $1,2,\dots,m$ in the inside sum, is equal to
$$=\sum_{m=2}^\infty\left(\sum_{k=1}^m{(-1)^{m-2}\over mk}\right)x^m
=\sum_{n=1}^\infty\left(\sum_{k=1}^{n+1}{(-1)^{n-1}\over(n+1)k}\right)x^{n+1}$$
and again apply Taylor's formula.
Alternate II
It looks so much like an impossible induction problem, I could not resist trying...
Let $y=f(x)=(\log(x)/x)$, so that the derivative $D(xy) = x\,y'+y = D(\log x) = 1/x$. By induction then, we have that the $n^{th}$ derivative is given by
$D^n(xy) = x\,y^{(n)}+n\,y^{(n-1)} = (-1)^{n-1} (n-1)!/x^n$, so that at $x=1$, we have
the equation
$$y^{(n)}+n\,y^{(n-1)} = (-1)^{n-1} (n-1)!\,.$$
Now we're ready to prove the formula for $f^{(n)}(1)$. That $f'(1)=1$ is easily verified. Assume that at $x=1$, the $n^{th}$ derivative $y^{(n)}=f^{(n)}(1)$ satisfies
$$y^{(n)}=(-1)^{n-1}(n!)(1+\frac{1}{2}+\cdots+\frac{1}{n})\,.$$
Then applying the equation above for the $n+1^{st}$ derivative, we have
$$y^{(n+1)}=(-1)^{n} n! -(n+1)y^{(n)}
={(-1)^{n} (n+1)!\over n+1}-(n+1){(-1)^{n-1}(n!)(1+\frac{1}{2}+\cdots+\frac{1}{n})}
={(-1)^{n}(n+1)!(1+\frac{1}{2}+\cdots+\frac{1}{n}+\frac{1}{n+1})}$$
So by induction the formula for the derivative at $x=1$ is established.