Possible Duplicate:
Calculating the Fourier transform of $\frac{\sinh(kx)}{\sinh(x)}$
Im trying to compute the integral of
$$I = \int_{-\infty}^\infty \frac{\sinh(kx)}{\sinh(x)}e^{-i\omega x} \ dx$$
for $0 < k < 1$ over the contour of the half circle in the upper plane.
I know I have residues for $x= i\pi n, n\in \mathbb N $. The second part of the contour where $$ x= R~e^{it} , t\in[0,\pi]$$ goes to 0, so I would be left with
$$I = \lim_{R\rightarrow \infty} \int_{-R}^{R} \frac{\sinh(kt)}{\sinh(t)}e^{-i\omega t}dt = \lim_{R\rightarrow \infty} 2\pi i \sum_{\mid z \mid=R}Res_{z}\left( \frac{\sinh(kt)}{\sinh(t)}e^{-i\omega t}\right)$$
My problem now is though, that I thought I'm not allowed to use the method of residues because I have an infinite amount of them?