Find derivative of $f(x)=\sin^{-1}[x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^2}]$, $0<x<1$
Let $x=\sin a$ and $\sqrt{x}=\cos b$
Then I'll get: $$ y=\sin^{-1}[\sin a\cos b-\cos a\sin b]=\sin^{-1}[\sin(a-b)]\\ \implies\sin y=\sin(a-b)\\ \implies y=n\pi+(-1)^n(a-b)=n\pi+(-1)^n(\sin^{-1}x-\sin^{-1}\sqrt{x}) $$ Thus, $$ y'=\frac{d}{dx}\big[n\pi+(-1)^n(a-b)\big]=\begin{cases}\frac{1}{\sqrt{1-x^2}}-\frac{1}{2\sqrt{x}\sqrt{1-x}}\text{ if }n\text{ is even}\\ -\bigg[\frac{1}{\sqrt{1-x^2}}-\frac{1}{2\sqrt{x}\sqrt{1-x}}\bigg]\text{ if }n\text{ is odd} \end{cases} $$ Is it the right way to solve this problem and how do I check the solution is correct ?
Note: I think there got to be two cases for the derivative as the graph of the function is
