Calculate $$\lim\limits_{x\to 0}{e^x-e^{\sin x} \over x-\sin x}$$
Personal work:
$$\lim\limits_{x\to 0}{e^x-e^{\sin x} \over x-\sin x}=^{0 \over 0}\lim\limits_{x\to 0}{e^x-e^{\sin x}\cdot\cos x \over 1-\cos x}=^{0 \over 0}\lim\limits_{x\to 0}{{e^x-(e^{\sin x}\cdot\cos x-\sin x}\cdot e^{\sin x}\over \sin x})=\cdots$$
This gets to nowhere. Also, I substituted $t=e^{\sin x}$ but I could not replace the $e^x$.