METHODOLOGY $1$: USE CREATIVE TELESCOPING
since $\frac12(\sqrt {k-1}+\sqrt k)\le \sqrt k\le \frac12(\sqrt {k+1}+\sqrt k)$, we can use creative telescoping to write
$$\sum_{k=1}^n2\left(\sqrt{k+1}-\sqrt k\right)\le\sum_{k=1}^n\frac{1}{\sqrt k}\le 1+\sum_{k=2}^n 2\left(\sqrt k-\sqrt{k-1}\right)$$
Evaluating the telescoping terms reveals
$$2(\sqrt {n+1}-1)\le \sum_{k=1}^n\frac{1}{\sqrt k}\le 2\sqrt n-1$$
whence dividing by $\sqrt n$ and applying the squeeze theorem yields the result
$$\lim_{n\to \infty }\frac1{\sqrt n}\sum_{k=1}^n \frac1{\sqrt k}=2$$
METHODOLOGY $2$: APPLY STOLZ-CESARO
Using the Stolz-Cesaro Theorem, we find that
$$\begin{align}
\lim_{n\to \infty}\frac{\sum_{k=1}^n \frac1{\sqrt k}}{\sqrt n}&=\lim_{n\to \infty} \left(\frac{\frac1{\sqrt{n+1}}}{\sqrt{n+1}-\sqrt{n}}\right)\\\\
&=\lim_{n\to \infty}\left(1+\frac{\sqrt n}{\sqrt{n+1}}\right)\\\\
&=2
\end{align}$$