0

Hello I'm studying some problems on computer science in which arises the following recurrence sequences:

$$x_{n+1} = \frac{1}{k + x_{n}}$$ $$x_{n+1} = \frac{1}{1/n + x_{n}}$$

$x_{0} = \epsilon >0$ for both and $k>0$.

What do you think about convergence on both?

1 Answers1

0

The first one converges for $k > .6$.

From $x_{n+1} = \frac{1}{k + x_{n}}$, $x_n < \frac1{k}$.

Therefore $x_n > \frac1{k+1/k}$.

Therefore $x_{n+2}-x_{n+1} = \frac{1}{k + x_{n+1}}-\frac{1}{k + x_{n}} = \frac{x_n-x_{n+1}}{(k + x_{n+1})(k + x_{n})} $ so $|\dfrac{x_{n+2}-x_{n+1}}{x_n-x_{n+1}} | = |\frac{1}{(k + x_{n+1})(k + x_{n})}| \lt |\frac{1}{(k + 1/(k+1/k))^2}| = |\frac{1}{(k + k/(k^2+1))^2}| = |\frac{(k^2+1)^2}{(k(k^2+1) + k)^2}| = |\frac{(k^2+1)^2}{(k^3+2k)^2}| \lt 1 $ for $x > .6$ according to Wolfy.

marty cohen
  • 107,799