Theorem: $\lim\limits_{x \rightarrow \rho}\frac{f_1(x)}{ f_2(x) } \stackrel{{\infty/\infty}}{=} \lim\limits_{x \rightarrow \rho}\frac{ F_1(x)}{ F_2(x) } $
Proof: Let $f_1(x)$ and $f_2(x)$ have poles at $\rho$, such $\lim\limits_{x \rightarrow \rho}\frac{f_1(x)}{f_2(x)} \stackrel{{\infty/\infty}}{=} L$. Let's notice that;
$$\forall_{f_{1,2}(x+\xi):\lim\limits_{x \rightarrow \rho} f_{1,2}(x+\xi)=L_{1,2} }\lim\limits_{x \rightarrow \rho}\frac{f_1(x)+f_1(x+\xi)}{f_2(x)+f_2(x+\xi)}=\lim\limits_{x \rightarrow \rho}\frac{f_1(x)}{f_2(x)}=L$$
In such case we can obtain;
$$
\begin{split}
\lim\limits_{x \rightarrow \rho}\frac{f_1(x)}{f_2(x)}& =\lim\limits_{x \rightarrow \rho}\frac{ \frac{a-x}{|\rho-x|}f_1(x)}{\frac{a-x}{|\rho-x|}f_2(x)}\\
& =\lim\limits_{x \rightarrow \rho}\frac{\frac{a-x}{|\rho-x|}\sum_{i=0}^{n=|\frac{1}{\rho-x}|} f_1\left(x+i\frac{a-x}{|\rho-x|}\right)}{\frac{a-x}{|\rho-x|}\sum_{i=0}^{n=|\frac{1}{\rho-x}|} f_2\left(x+i\frac{a-x}{|\rho-x|}\right) } \\
& =\lim\limits_{x \rightarrow \rho}\frac{\int_x^af_1(x) dx}{\int_x^a f_2(x) dx}
\end{split}
$$
At this point we can set any $a$, such $|F_{1,2}(a)| \neq \infty $. Second less formal way of looking at this is to set $a \rightarrow \infty$ and assume it's convergent to $0$, which is sufficient condition to get analytic continuation of $\int_x^{\infty} f_{1,2}(x)dx$.
Let's notice that it do not work for $\frac{0}{0}$